Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors.

نویسندگان

  • Dominique Baas
  • Claude Legrand
  • Jacques Samarut
  • Frédéric Flamant
چکیده

Thyroid hormone (3,5,3'-triiodo-l-thyronine or T3) exerts a pleiotropic activity during central nervous system development. Hypothyroidism during the fetal and postnatal life results in an irreversible mental retardation syndrome. At the cellular level, T3 is known to act on neuronal and glial lineages and to control cell proliferation, apoptosis, migration, and differentiation. Oligodendrocyte precursor cells (OPC) found at birth in the optic nerves are self-renewing cells that normally differentiate during the first 3 weeks of rodent postnatal life into postmitotic myelinating oligodendrocytes. In vitro, the addition of T3 to OPC is sufficient to trigger their terminal differentiation. The present analysis of T3 receptor knockout mice reveals that the absence of all T3 receptor results in the persistence of OPC proliferation in adult optic nerves, in a default in myelination, and sometimes in the degeneration of the retinal ganglion neurons. Thus, T3 signaling is necessary in vivo to promote the complete differentiation of OPC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells.

During vertebrate development many types of precursor cells divide a limited number of times before they stop dividing and terminally differentiate. It is unclear what causes the cells to stop dividing when they do. We have been studying this problem in the oligodendrocyte cell lineage, which is responsible for myelination in the vertebrate central nervous system. Here we show for the first tim...

متن کامل

A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation.

Nerve conduction within the mammalian central nervous system is made efficient by oligodendrocyte-derived myelin. Historically, thyroid hormones have a well described role in regulating oligodendrocyte differentiation and myelination during development; however, it remains unclear which thyroid hormone receptors are required to drive these effects. This is a question with clinical relevance sin...

متن کامل

P129: Use of Stem Cells to Regenerate Degenerative Optic Nerve

Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...

متن کامل

Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice

Sulfatide is a myelin glycolipid that functions in the formation of paranodal axo-glial junctions in vivo and in the regulation of oligodendrocyte differentiation in vitro. Cerebroside sulfotransferase (CST) catalyzes the production of two sulfated glycolipids, sulfatide and proligodendroblast antigen, in oligodendrocyte lineage cells. Recent studies have demonstrated significant increases in o...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2002